
Simulink® Coder™

Getting Started Guide

R2013b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Coder™ Getting Started Guide
© COPYRIGHT 2011–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
April 2011 Online only New for Version 8.0 (Release 2011a)
September 2011 Online only Revised for Version 8.1 (Release 2011b)
March 2012 Online only Revised for Version 8.2 (Release 2012a)
September 2012 Online only Revised for Version 8.3 (Release 2012b)
March 2013 Online only Revised for Version 8.4 (Release 2013a)
September 2013 Online only Revised for Version 8.5 (Release 2013b)

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase ‘‘Incorrect Code Generation’’ to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

Product Overview

1
Simulink Coder Product Description 1-2
Key Features . 1-2

Code Generation Technology . 1-3

Target Environments and Applications 1-4
About Target Environments . 1-4
Types of Target Environments Supported By Simulink
Coder . 1-4

Applications of Supported Target Environments 1-7

Algorithm Development Options . 1-9
Simulink and Stateflow Model . 1-10
MATLAB Code with Simulink Model 1-21

V-Model for System Development 1-23
What Is the V-Model? . 1-23
Types of Simulation and Prototyping in the V-Model 1-24
Types of In-the-Loop Testing in the V-Model 1-26
Mapping of Code Generation Goals to the V-Model 1-27

Getting Started Examples

2
Generate C Code for a Model . 2-2
Configure Model for Code Generation 2-2
Check Model Configuration for Execution Efficiency 2-4
Simulate the Model . 2-7
Generate Code . 2-8
View the Generated Code . 2-9

v

Build and Run Executable . 2-13
Configure Model to Output Data to MAT-File 2-13
Build Executable . 2-14
Run Executable . 2-15
View Results . 2-16

Tune Parameters and Monitor Signals During
Execution . 2-19
Set Up Signal Monitoring . 2-19
Set Up Tunable Parameters . 2-20
Build the Target Executable . 2-22
Run External Mode Target Program 2-23
Connect Simulink to the External Process 2-24
Parameter Tuning . 2-24
Next Steps . 2-26

Index

vi Contents

1

Product Overview

• “Simulink® Coder™ Product Description” on page 1-2

• “Code Generation Technology” on page 1-3

• “Target Environments and Applications” on page 1-4

• “Algorithm Development Options” on page 1-9

• “V-Model for System Development” on page 1-23

1 Product Overview

Simulink Coder Product Description
Generate C and C++ code from Simulink® and Stateflow® models

Simulink Coder™ (formerly Real-Time Workshop®) generates and executes C
and C++ from Simulink diagrams, Stateflow charts, and MATLAB® functions.
The generated source code can be used for real-time and non-real-time
applications, including simulation acceleration, rapid prototyping, and
hardware-in-the-loop testing. You can tune and monitor the generated code
using Simulink or run and interact with the code outside MATLAB and
Simulink.

Key Features

• ANSI/ISO C and C++ code and executables for discrete, continuous, or
hybrid Simulink and Stateflow models

• Incremental code generation for large models

• Integer, floating-point, and fixed-point data type support

• Code generation for single-rate, multirate, and asynchronous models

• Single-task, multitask, and multicore code execution with or without an
RTOS

• External mode simulation for parameter tuning and signal monitoring

1-2

Code Generation Technology

Code Generation Technology
MathWorks® Code generation technology generates C or C++ code and
executables for algorithms that you model programmatically with MATLAB or
graphically in the Simulink environment. You can generate code for MATLAB
functions and Simulink blocks that are useful for real-time or embedded
applications. The generated source code and executables for floating-point
algorithms match the functional behavior of MATLAB code execution and
Simulink simulations to high degrees of fidelity. Using the Fixed-Point
Designer™ product, you can generate fixed-point code that provides a bit-wise
match to model simulation results. Such broad support and high degrees
of accuracy are possible because code generation is tightly integrated with
the MATLAB and Simulink execution and simulation engines. The built-in
accelerated simulation modes in Simulink use code generation technology.

Code generation technology and related products provide tooling that you can
apply to the V-model for system development. The V-model is a representation
of system development that highlights verification and validation steps in
the development process. For more information about the V-model and how
MathWorks code generation technology and related products provide tooling
that you can apply to the process, see “V-Model for System Development”
on page 1-23.

1-3

http://www.mathworks.com/products/featured/embeddedmatlab/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/simfixed/

1 Product Overview

Target Environments and Applications

In this section...

“About Target Environments” on page 1-4

“Types of Target Environments Supported By Simulink® Coder™” on page
1-4

“Applications of Supported Target Environments” on page 1-7

About Target Environments
In addition to generating source code, the code generator produces make or
project files to build an executable for a specific target environment. The
generated make or project files are optional. If you prefer, you can build an
executable for the generated source files by using an existing target build
environment, such as a third-party integrated development environment
(IDE). Applications of generated code range from calling a few exported C or
C++ functions on a host computer to generating a complete executable using
a custom build process, for custom hardware, in an environment completely
separate from the host computer running MATLAB and Simulink.

The code generator provides built-in system target files that generate, build,
and execute code for specific target environments. These system target files
offer varying degrees of support for interacting with the generated code to
log data, tune parameters, and experiment with or without Simulink as the
external interface to your generated code.

Types of Target Environments Supported By Simulink
Coder
Before you select a system target file, identify the target environment on
which you expect to execute your generated code. The most common target
environments include those environments listed in the following table.

1-4

Target Environments and Applications

Target
Environment

Description

Host computer The same computer that runs MATLAB and Simulink. Typically, a host
computer is a PC or UNIX®1 environment that uses a non-real-time
operating system, such as Microsoft® Windows® or Linux®2. Non-real-time
(general purpose) operating systems are nondeterministic. For example,
those operating systems might suspend code execution to run an operating
system service and then, after providing the service, continue code
execution. Therefore, the executable for your generated code might run
faster or slower than the sample rates that you specified in your model.

Real-time
simulator

A different computer than the host computer. A real-time simulator can
be a PC or UNIX environment that uses a real-time operating system
(RTOS), such as:

• xPC Target™ system

• A real-time Linux system

• A Versa Module Eurocard (VME) chassis with PowerPC® processors
running a commercial RTOS, such as VxWorks® from Wind River®

Systems

The generated code runs in real time and behaves deterministically. The
exact nature of execution varies based on the particular behavior of the
system hardware and RTOS.

Typically, a real-time simulator connects to a host computer for data
logging, interactive parameter tuning, and Monte Carlo batch execution
studies.

Embedded
microprocessor

A computer that you eventually disconnect from a host computer and run as
a standalone computer as part of an electronics-based product. Embedded
microprocessors range in price and performance, from high-end digital
signal processors (DSPs) that process communication signals to inexpensive
8-bit fixed-point microcontrollers in mass production (for example, electronic
parts produced in the millions of units). Embedded microprocessors can:

1. UNIX® is a registered trademark of The Open Group in the United States and other
countries.

2. Linux® is a registered trademark of Linus Torvalds.

1-5

http://en.wikipedia.org/wiki/RTOS
http://en.wikipedia.org/wiki/RTOS
http://www.mathworks.com/products/xpctarget/

1 Product Overview

Target
Environment

Description

• Use a full-featured RTOS

• Be driven by basic interrupts

• Use rate monotonic scheduling provided with code generation

A target environment can:

• Have single- or multiple-core CPUs

• Be a standalone computer or communicate as part of a computer network

In addition, you can deploy different parts of a Simulink model on different
target environments. For example, it is common to separate the component
(algorithm or controller) portion of a model from the environment (or plant).
Using Simulink to model an entire system (plant and controller) is often
referred to as closed-loop simulation and can provide many benefits, such
as early verification of components.

The following figure shows example target environments for code generated
for a model.

Co
de

ge
ne

ra
tio

n

Algorithm model

Host
executable

System model

Host computer(s)

Embedded
microprocessor

Real-time
simulator

Environment model

Co
de

ge
ne

ra
tio

n

Co
de

ge
ne

ra
tio

n

1-6

http://en.wikipedia.org/wiki/Rate-monotonic_scheduling

Target Environments and Applications

Applications of Supported Target Environments
The following table lists several ways that you can apply code generation
technology in the context of the different target environments.

Application Description

Host Computer

Accelerated simulation You apply techniques to speed up the execution of model
simulation in the context of the MATLAB and Simulink
environments. Accelerated simulations are especially
useful when run time is long compared to the time
associated with compilation and checking whether the
target is up to date.

Rapid simulation You execute code generated for a model in nonreal time
on the host computer, but outside the context of the
MATLAB and Simulink environments.

System simulation You integrate components into a larger system. You
provide generated source code and related dependencies
for building a system in another environment or in
a host-based shared library to which other code can
dynamically link.

Model intellectual property protection You generate a Simulink shareable object library for a
model or subsystem for use by a third-party vendor in
another Simulink simulation environment.

Real-Time Simulator

Rapid prototyping You generate, deploy, and tune code on a real-time
simulator connected to the system hardware (for
example, physical plant or vehicle) being controlled.
This design step is crucial for validating whether a
component can control the physical system.

System simulation You integrate generated source code and dependencies
for components into a larger system that is built in
another environment. You can use shared library files
for intellectual property protection.

1-7

1 Product Overview

Application Description

On-target rapid prototyping You generate code for a detailed design that you can
run in real time on an embedded microprocessor while
tuning parameters and monitoring real-time data. This
design step allows you to assess, interact with, and
optimize code, using embedded compilers and hardware.

Embedded Microprocessor

Production code generation From a model, you generate code that is optimized
for speed, memory usage, simplicity, and potentially,
compliance with industry standards and guidelines.

“Software-in-the-Loop (SIL)
Simulation”

You execute generated code with your plant model
within Simulink to verify conversion of the model to
code. You might change the code to emulate target word
size behavior and verify numerical results expected
when the code runs on an embedded microprocessor.
Or, you might use actual target word sizes and just test
production code behavior.

“Processor-in-the-Loop (PIL)
Simulation”

You test an object code component with a plant or
environment model in an open- or closed-loop simulation
to verify model-to-code conversion, cross-compilation,
and software integration.

Hardware-in-the-loop (HIL) testing You verify an embedded system or embedded computing
unit (ECU), using a real-time target environment.

1-8

Algorithm Development Options

Algorithm Development Options

In this section...

“Simulink and Stateflow Model” on page 1-10

“MATLAB Code with Simulink Model” on page 1-21

You can use MathWorks code generation technology to generate standalone
C or C++ source code for rapid prototyping, simulation acceleration, and
hardware-in-the-loop (HIL) simulation:

• By developing Simulink models and Stateflow charts, and then generating
C/C++ code from the models and charts with the Simulink Coder product

• By integrating MATLAB code into Simulink models, using code generation
from MATLAB and the Simulink MATLAB Function block, and then
generating C/C++ code with the Simulink Coder product

The following figure shows these design and deployment environment
options. Although not shown in the figure, other products that support code
generation, such as Stateflow software, are available.

1-9

1 Product Overview

�����
��	
���
���

���������������
�������	
��

��	
��

��	
������
����
���
�

�����
������������
��

��������

��������
�����

��������

���

�����������
 !"�����
����

"#�
��������������
$�����������������%��������&

If you are familiar with C language constructs and want to learn about how
to map commonly used C constructs to code generated from model design
patterns that include Simulink blocks, Stateflow charts, and MATLAB
functions, see “Patterns for C Code”.

Simulink and Stateflow Model

About the Workflow
Simulink support for dynamic system simulation, conditional execution of
system semantics, and large model hierarchies provides an environment
for modeling periodic and event-driven algorithms commonly found in
embedded systems. You can generate code for most Simulink blocks and
many MathWorks products.

The typical workflow for applying the Simulink Coder software to the
application development process is:

1-10

Algorithm Development Options

1 Map your application requirements to available configuration options.

2 Adjust configuration settings.

3 Run the Model Advisor tool.

4 Tune configuration options based on the Model Advisor report.

5 Generate code for your model.

6 Repeat steps 2 to 5, until you verify the generated code.

7 Build an executable program image.

8 Verify that the generated program produces results that are equivalent
to those of your model simulation.

9 Save the configuration, and alternative configurations, with the model.

10 Use Simulink Report Generator™ to automatically document the project.

Sections following the figure describe the steps in more detail.

1-11

1 Product Overview

���������
������'�(���������
������������������������

��)��������������������������

'�����������%����

*������������

������"#�
�������+������

,����-�"#�
�������+������

.����������%�
�����������������

!�
������+��)�
�

�������������
'�(�����
	�����/

������0/

'����������
�
����������/

!���

1��

.�

1��

.�

.�

1��

Mapping Application Requirements to Configuration Options
The first step in applying the Simulink Coder software to the application
development process is to consider how your application requirements,
particularly with respect to debugging, traceability, efficiency, and safety,
map to code generation options available through the Simulink Configuration
Parameters dialog box. The following graphic shows the Code Generation
pane of the Configuration Parameters dialog box.

1-12

Algorithm Development Options

Parameters that you set in the various panes of the Configuration Parameters
dialog box affect the behavior of a model in simulation and the code generated
for the model. The Simulink Coder software automatically adjusts the
available configuration parameters and their default settings based on
your target selection. For example, the preceding dialog box display shows
default settings for the generic real-time (GRT) target. Become familiar with
the various parameters and be prepared to adjust settings to optimize a
configuration for your application.

As you review the parameters, consider: questions such as the following:

• What settings will help you debug your application?

• What is the highest priority for your application — efficiency, traceability,
extra safety precaution, or other criteria?

• What is the second highest priority?

• Can the priority at the start of the project differ from the priority required
for the end of the project? What tradeoffs can you make?

Once you have answered these questions, you can either:

• Use the Code Generation Advisor to identify changes to model constructs
and settings that improve the generated code. For more information, see
“Application Objectives” in the Simulink Coder User’s Guide.

1-13

1 Product Overview

• Review “Recommended Settings Summary”, which summarizes the impact
of each configuration option on efficiency, traceability, safety precautions,
and debugging, and indicates the default (factory) configuration settings for
the GRT target. For additional details, click the links in the Configuration
Parameter column.

To see the settings that the Code Generation Advisor recommends, review the
“Recommended Settings Summary”.

If you use a specific embedded target, a Stateflow target, or fixed-point blocks,
consider the mapping of many other configuration parameters. For details,
see the documentation specific to your target environment.

Adjusting Configuration Settings
Once you have mapped your application requirements to configuration
parameter settings, adjust the settings accordingly. In “Recommended
Settings Summary”, using the Default column in the mapping tables, identify
the configuration parameters to modify. Then, open the Configuration
Parameters dialog box or Model Explorer and make adjustments.

Note You also can use get_param and set_param to individually access most
configuration parameters both interactively and in scripts. The relevant
configuration parameters are listed in the “Parameter Reference” in the
Simulink Coder documentation.

Run the Model Advisor
Before you generate code, it is good practice to run the Model Advisor. Based
on a list of options that you select, this tool analyzes your model and its
parameter settings. The tool then generates results that list findings with
information on how to fix and improve the model and its configuration.

To start the Model Advisor, in your model window, select Analysis > Model
Advisor > Model Advisor. A new window opens listing specific diagnostics
that you can individually select or clear. Some examples of the diagnostics are:

• Identify blocks that generate expensive saturation and rounding code

1-14

Algorithm Development Options

• Check optimization settings

• Identify questionable software environment specifications

The Model Advisor is particularly useful for identifying aspects of your model
that limit code efficiency or impede deployment of production code.

For more information on using the Model Advisor, see “Advice About
Optimizing Models for Code Generation” in the Simulink Coder
documentation.

Generating Code
After fine-tuning your model and its parameter settings, you can generate
code. Typically, the first time through the process of applying Simulink Coder
software for an application, you want to generate code without compiling and
linking it into an executable program. Some reasons for not compiling and
linking the code are:

• Inspecting the generated code. Is the Simulink Coder code generator
creating what you expect?

• Integrating custom handwritten code.

• Experimenting with configuration option settings.

You specify code generation by selecting the Generate code only check box
available on the Code Generation pane of the Configuration Parameters
dialog box (changing the label of the Build button to Generate code). The
code generator then analyzes the block diagram that represents your model,
generating C code, and placing the resulting files in a build folder within
your current working folder.

After generating the code, inspect it. Is it what you expected? If not,
determine what model and configuration changes to make, rerun the Model
Advisor, and regenerate the code. When you are satisfied with the generated
code, build an executable program image, as described in “Building an
Executable Program” on page 1-16.

For details on the Generate code only option, see “Generate code only”.

1-15

1 Product Overview

Verifying the Generated Code
Verify whether the generated code behaves as expected, generates expected
results, and meets performance requirements by using these verification
techniques:

• “Log Data for Analysis”

• “Simulation and Code Comparison”

Building an Executable Program
When you are satisfied with the code generated for your model, build an
executable program image. If the Generate code only option on the Code
Generation pane of the Configuration Parameters dialog box is selected,
clear it. This action changes the label of the Generate code button back
to Build.

To initiate a build, click the Build button. The code generator:

1 Compiles the model — The Simulink Coder software analyzes your
block diagram (and models referenced by Model blocks) and compiles an
intermediate hierarchical representation in a file called model.rtw.

2 Generates C code — The Target Language Compiler reads model.rtw,
translates it to C code, and places the C file in a build folder within your
working folder.

When you click Generate code processing stops. See “Generating Code”
on page 1-15.

3 Generates a customized makefile — The Simulink Coder software
constructs a makefile from a target makefile template and writes it in
the build folder.

4 Generates an executable program — Instructs your system’s make utility
to use the generated makefile to compile the generated source code, link
object files and libraries, and generate an executable program file called
model (UNIX) or model.exe (Microsoft Windows). The makefile places the
executable image in your working folder.

1-16

Algorithm Development Options

If you select Create code generation report on the Code
Generation > Report pane, a navigable summary of source files is
produced when the model is built. The report files occupy folder html in
the build folder. The reports provide links to generated source files. Report
contents vary depending on the target.

If the software detects code generation constraints for your model, it issues
warning or error messages.

The following figure illustrates the complete process. The box labeled
“Automated build process” highlights portions of the process that the
Simulink Coder software executes.

��������
�����

�������������
����+���������

2���3��%������
���������
��������
��������

1���
	�������
��������

����������

���������
���������
���

"#�
������
���������

*�������
����

*�������
��������

����	
����

�����
������	���

������
��������

����	���

����	����
+������

����������

����	��
����	��
����		�
�������

1-17

1 Product Overview

In the Configuration Parameters dialog box, in the Build process section
of the Code Generation pane, the MATLAB command file specified by the
Make command field controls an internal portion of the build process. By
default, the name of the command file is make_rtw. The build process invokes
this file for most targets. Options specified in this field are passed into the
makefile-based build process. In some cases, targets customize the make_rtw
command. However, preserve the arguments used by the function.

Although the command may work for a standalone model, if you use the
make_rtw command at the command line you might get an error. For example,
if you have multiple models open, verify that:

• The current subsystem contains the model that you want to build. You can
find the current subsystem by entering gcs in the MATLAB Command
Window.

• In the Configuration Parameters dialog box, theMake command specified
for the target environment is make_rtw.

• The model includes Model blocks. Models containing Model blocks do not
build by using make_rtw directly.

To build (or generate code for) a model from the MATLAB Command Window,
use one of the following rtwbuild commands, where model is the name of
the model:

rtwbuild model
rtwbuild('model')

Verifying the Executable Program
Once you have an executable image, run the image and compare the results to
the results of your model simulation.

1 Log output data produced by simulation runs.

2 Log output data produced by executable program runs.

3 Compare the results of the simulation and executable program runs.

1-18

Algorithm Development Options

Does the output match? Can you explain any differences? Do you need to
eliminate any differences? You might need to revisit and possibly fine-tune
your block and configuration parameter settings.

For an example, see “Verifying the Generated Code” on page 1-16.

Naming and Saving the Configuration Set
When you close a model, save it to preserve your configuration settings
(unless your recent changes are dispensable). If you want to maintain several
alternative configurations for a model (e.g., GRT and Rapid Simulation
targets, inline parameters on/off, different solvers, etc.), you can set up a
configuration set for each set of configuration parameters and give each set an
identifying name. You can do this easily in Model Explorer.

To name and save a configuration:

1 Open Model Explorer from the model window by selecting Model
Explorer > View.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Under the mode name, click the Configuration (active) node.

The Configuration Parameters dialog box opens in the right pane.

4 In the Configuration Parameters pane, in the Name field, type a name
you want to give the current configuration.

5 Click Apply. In the Model Hierarchy pane, the name of the active
configuration changes to the name that you typed.

6 Save the model.

Adding and Copying Configuration Sets. You can save the model with
more than one configuration so that you can instantly reconfigure it at a later
time. Copy the active configuration to a new one, or add a new one, then
modify and name the new configuration:

1-19

1 Product Overview

1 Open Model Explorer from your model window by selecting Model
Explorer > View.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 To add a new configuration set, while the model is selected in the Model
Hierarchy pane, from the Add menu, select Configuration Set or on the
toolbar, click the yellow gear icon:

In the Model Hierarchy pane, you see a new configuration set named
Configuration.

4 To copy an existing configuration set, in the Model Hierarchy pane,
right-click its name and drag it to the + sign in front of the model name.

In the Model Hierarchy pane, you see a new configuration set with a
numeral (for example, 1) appended to its name.

5 If you want, rename the new configuration by right-clicking it, selecting
Properties, and in the Configuration Parameters dialog box that opens,
type the new name in the Name field. Then click Apply.

6 Make the new configuration the active one. In theModel Hierarchy pane,
right-click the new configuration. From the context menu, select Activate.

In the right pane, the content of the Is Active field changes from no to yes.

7 Save the model.

Documenting the Project
Consider documenting the design and implementation details of your project
to facilitate:

• Project verification and validation.

• Collaboration with other individuals or teams, particularly if dependencies
exist.

1-20

Algorithm Development Options

• Archiving the project for future reference.

Use the Simulink Report Generator software to document a code generation
project. You can generate a comprehensive Rich Text Format (RTF),
Extensible Markup Language (XML), or Hypertext Markup Language
(HTML) report that includes:

• Model name and version

• Simulink Coder product version

• Date and time the code generator created the code

• List of generated source and header (include) files

• Optimization and Simulink Coder target selection and build process
configuration settings

• Mapping of subsystem numbers to subsystem labels

• Listings of generated and custom code for the model

To generate a code generation report, see the example rtwdemo_codegenrpt
and “Document Generated Code with Simulink Report Generator”. For details
about the Report Generator, see “Simulink Report Generator”.

MATLAB Code with Simulink Model
You might use both MATLAB code and Simulink models for a Model-Based
Design project if you:

• Start by using MATLAB to develop an algorithm for research and early
development.

• Later want to integrate the algorithm into a graphical model for system
deployment and verification.

Benefits of this approach include:

• Richer system simulation environment

• Ability to verify the MATLAB code

1-21

1 Product Overview

• Simulink Coder and Embedded Coder® C/C++ code generation for the
model and MATLAB code

The following table summarizes how to generate C or C++ code, using this
approach, and identifies where you can find more information.

If you develop
algorithms using...

You generate code by... For more information, see...

Code generation from
MATLAB and Simulink

Including MATLAB code in
Simulink models or subsystems
by using the MATLAB Function
block.

To use this block, you can do
one of the following:

• Copy your code into the block.

• Call your code from the block
by referencing files on the
MATLAB path.

Code generation from MATLAB
documentation

MATLAB Function block in the
Simulink documentation

1-22

V-Model for System Development

V-Model for System Development

In this section...

“What Is the V-Model?” on page 1-23

“Types of Simulation and Prototyping in the V-Model” on page 1-24

“Types of In-the-Loop Testing in the V-Model” on page 1-26

“Mapping of Code Generation Goals to the V-Model” on page 1-27

What Is the V-Model?
The V-model is a representation of system development that highlights
verification and validation steps in the system development process. As the
following figure shows, the left side of the V identifies steps that lead to code
generation, including requirements analysis, system specification, detailed
software design, and coding. The right side of the V focuses on the verification
and validation of steps cited on the left side, including software integration
and system integration.

1-23

1 Product Overview

System Specification

Coding

Software Detailed
Design

System Integration
and Calibration

 Hardware-in-the-loop
(HIL) testing

 Processor-in-the-loop
(PIL) testing

Simulation

Rapid simulation

System simulation (export)

Rapid prototyping

 Software-in-the-loop
(SIL) testing

On-target rapid prototyping

Production code generation

Model encryption (export)

Verification and validation

Software Integration

Depending on your application and its role in the process, you might focus on
one or more of the steps called out in the V-model or repeat steps at several
stages of the V-model. Code generation technology and related products
provide tooling that you can apply at each step.

Types of Simulation and Prototyping in the V-Model
The following table compares the types of simulation and prototyping
identified on the left side of the V-model diagram.

1-24

V-Model for System Development

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Purpose Test and validate
functionality of
concept model

Refine, test,
and validate
functionality of
concept model in
nonreal time

Test new ideas
and research

Refine and
calibrate
designs during
development
process

Execution
hardware

Host computer Host computer

Standalone
executable
runs outside
of MATLAB
and Simulink
environments

PC or nontarget
hardware

Embedded
computing
unit (ECU) or
near-production
hardware

Code
efficiency
and I/O
latency

Not applicable Not applicable Less emphasis
on code efficiency
and I/O latency

More emphasis on
code efficiency and
I/O latency

Ease of use
and cost

Can simulate
component
(algorithm or
controller) and
environment (or
plant)

Normal mode
simulation in
Simulink enables
you to access,
display, and
tune data during
verification

Can accelerate
Simulink
simulations with
Accelerated and

Easy to simulate
models of hybrid
dynamic systems
that include
components and
environment
models

Ideal for batch
or Monte Carlo
simulations

Can repeat
simulations with
varying data sets,
interactively or
programmatically
with scripts,

Might require
custom real-time
simulators and
hardware

Might be done
with inexpensive
off-the-shelf PC
hardware and I/O
cards

Might use existing
hardware, thus
less expensive and
more convenient

1-25

1 Product Overview

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Rapid Accelerated
modes

without rebuilding
the model

Can connect
to Simulink
to monitor
signals and tune
parameters

Types of In-the-Loop Testing in the V-Model
The following table compares the types of in-the-loop testing for verification
and validation identified on the right side of the V-model diagram.

SIL Testing PIL Testing
on Embedded
Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Purpose Verify component
source code

Verify component
object code

Verify component
object code

Verify system
functionality

Fidelity and
accuracy

Two options:

Same source
code as target,
but might
have numerical
differences

Changes source
code to emulate
word sizes, but is
bit accurate for
fixed-point math

Same object code

Bit accurate for
fixed-point math

Cycle accurate
because code runs
on hardware

Same object code

Bit accurate for
fixed-point math

Might not be cycle
accurate

Same executable
code

Bit accurate for
fixed-point math

Cycle accurate

Use real and
emulated system
I/O

Execution
platforms

Host Target Host Target

1-26

V-Model for System Development

SIL Testing PIL Testing
on Embedded
Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Ease of use
and cost

Desktop
convenience

Executes only in
Simulink

Reduced
hardware cost

Executes on desk
or test bench

Uses hardware —
process board and
cables

Desktop
convenience

Executes only on
host computer
with Simulink
and integrated
development
environment
(IDE)

Reduced
hardware cost

Executes on test
bench or in lab

Uses hardware
— processor,
embedded
computer unit
(ECU), I/O devices,
and cables

Real-time
capability

Not real time Not real time
(between samples)

Not real time
(between
samples)

Hard real time

Mapping of Code Generation Goals to the V-Model
The following tables list goals that you might have, as you apply code
generation technology, and where to find guidance on how to meet those
goals. Each table focuses on goals that pertain to a step of the V-model for
system development.

• Documenting and Validating Requirements on page 1-28

• Developing a Model Executable Specification on page 1-30

• Developing a Detailed Software Design on page 1-33

• Generating the Application Code on page 1-37

• Integrating and Verifying Software on page 1-39

• Integrating, Verifying, and Calibrating System Components on page 1-42

1-27

1 Product Overview

Documenting and Validating Requirements

Goals Related Product Information Examples

Capture requirements in
a document, spreadsheet,
data base, or requirements
management tool

“Simulink Report Generator”

Third-party vendor tools such
as Microsoft Word, Microsoft
Excel®, raw HTML, or IBM®

Rational® DOORS®

Associate requirements
documents with objects in
concept models

Generate a report on
requirements associated
with a model

“Requirements Traceability”
— Simulink Verification and
Validation™

Bidirectional tracing in Microsoft
Word, Microsoft Excel, HTML,
and IBM Rational DOORS

slvnvdemo_fuelsys_docreq

Include requirements links in
generated code

“Review of Requirements Links”
— Simulink Verification and
Validation

rtwdemo_requirements

Trace model blocks and
subsystems to generated code
and vice versa

“Code Tracing” — Embedded
Coder

rtwdemo_hyperlinks

Verify, refine, and test concept
model in non real time on a
host system

“Modeling” — Simulink Coder

“Modeling” — Embedded Coder

“Simulation” — Simulink

“Acceleration” — Simulink

rtwdemo_fuelsys_publish

1-28

V-Model for System Development

Documenting and Validating Requirements (Continued)

Goals Related Product Information Examples

Run standalone rapid
simulations

Run batch or Monte-Carlo
simulations

Repeat simulations with
varying data sets, interactively
or programmatically with
scripts, without rebuilding the
model

Tune parameters and monitor
signals interactively

Simulate models for hybrid
dynamic systems that
include components and
an environment or plant that
requires variable-step solvers
and zero-crossing detection

“Rapid Simulation”

“Host/Target Communication”
rtwdemo_rsim_param_survey_-
script
rtwdemo_rsim_batch_script
rtwdemo_rsim_param_tuning

Distribute simulation runs
across multiple computers

“SystemTest™”

“MATLAB Distributed
Computing Server™”

“Parallel Computing Toolbox™”

1-29

1 Product Overview

Developing a Model Executable Specification

Goals Related Product
Information

Examples

Produce design artifacts for
algorithms that you develop in
MATLAB code for reviews and
archiving

“ MATLAB Report Generator”

Produce design artifacts
from Simulink and Stateflow
models for reviews and
archiving

“Simulink Report Generator”

“System Design Description”
— Simulink Report Generator

rtwdemo_codegenrpt

Add one or more components
to another environment for
system simulation

Refine a component model

Refine an integrated system
model

Verify functionality of a model
in nonreal time

Test a concept model

“Real-Time System Rapid
Prototyping”

Schedule generated code “Scheduling”

“Handle Asynchronous
Events”

rtwdemos, select Multirate
Support folder

Specify function boundaries of
systems

“Subsystems”
rtwdemo_atomic
rtwdemo_ssreuse
rtwdemo_filepart
rtwdemo_export_functions

Specify components and
boundaries for design and
incremental code generation

“Component-Based Modeling”
— Simulink Coder

“Component-Based Modeling”
— Embedded Coder

rtwdemo_mdlreftop

1-30

V-Model for System Development

Developing a Model Executable Specification (Continued)

Goals Related Product
Information

Examples

Specify function interfaces
so that external software can
compile, build, and invoke the
generated code

“Function Interfaces” —
Simulink Coder

“Function and Class
Interfaces” — Embedded
Coder

rtwdemo_fcnprotoctrl
rtwdemo_cppencap

Manage data packaging in
generated code for integrating
and packaging data

“File Packaging” — Simulink
Coder

“File Packaging ” — Embedded
Coder

“Program Builds”

rtwdemos, select Function,
File and Data Packaging
folder

Generate and control the
format of comments and
identifiers in generated code

“Add Custom Comments to
Generated Code” — Embedded
Coder

“Customize Generated
Identifier Naming Rules”
— Embedded Coder

rtwdemo_comments
rtwdemo_symbols

Create a zip file that contains
generated code files, static
files, and dependent data to
build generated code in an
environment other than your
host computer

“Relocate Code to Another
Development Environment”

rtwdemo_buildinfo

Export models for validation
in a system simulator using
shared libraries

“Shared Object Libraries” —
Embedded Coder

rtwdemo_shrlib

1-31

1 Product Overview

Developing a Model Executable Specification (Continued)

Goals Related Product
Information

Examples

Refine component and
environment model designs by
rapidly iterating between
algorithm design and
prototyping

Verify whether a component
can adequately control a
physical system in non-real
time

Evaluate system performance
before laying out hardware,
coding production software, or
committing to a fixed design

Test hardware

“Deployment” — Simulink
Coder

“Deployment” —Embedded
Coder

rtwdemo_profile

Generate code for rapid
prototyping

“Function Interfaces”

“Entry Point Functions and
Scheduling” — Embedded
Coder

“Atomic Subsystem Code” —
Embedded Coder

rtwdemo_counter
rtwdemo_async

Generate code for rapid
prototyping in hard real time,
using PCs

“xPC Target” doc xpcdemos

Generate code for rapid
prototyping in soft real time,
using PCs

“Real-Time Windows
Target™”

rtvdp (and others)

1-32

V-Model for System Development

Developing a Detailed Software Design

Goals Related Product
Information

Examples

Refine a model design for
representation and storage of
data in generated code

“Data Representation” —
Simulink Coder

“Data Representation ” —
Embedded Coder

Select a deployment code
format

“Target” — Simulink Coder

“Target”— Embedded Coder

“Sharing Utility Code” —
Embedded Coder

“AUTOSAR Code Generation”
— Embedded Coder

rtwdemo_counter
rtwdemo_async
“AUTOSAR Examples”
in the Embedded Coder
documentation

Specify target hardware
settings

“Target” — Simulink Coder

“Target”— Embedded Coder

rtwdemo_targetsettings

Design model variants “Variant Systems” — Simulink

“Variant Systems” —
Embedded Coder

Specify fixed-point algorithms
in Simulink, Stateflow, and
the MATLAB language subset
for code generation

“Data Types and Scaling” —
Fixed-Point Designer

“Fixed-Point Code Generation”
— Fixed-Point Designer

rtwdemo_fixpt1
rtwdemo_fuelsys_fxp_publish

Convert a floating-point model
or subsystem to a fixed-point
representation

“Conversion Using Simulation
Data” — Fixed-Point Designer

“Conversion Using Range
Analysis” — Fixed-Point
Designer

fxpdemo_fpa

Iterate to obtain an optimal
fixed-point design, using
autoscaling

“Data Types and Scaling” —
Fixed-Point Designer

fxpdemo_feedback

1-33

1 Product Overview

Developing a Detailed Software Design (Continued)

Goals Related Product
Information

Examples

Create or rename data
types specifically for your
application

“User-Defined Data Types” —
Embedded Coder

“Data Type Replacement” —
Embedded Coder

rtwdemo_udt

Control the format of
identifiers in generated
code

“Customize Generated
Identifier Naming Rules”
— Embedded Coder

rtwdemo_symbols

Specify how signals, tunable
parameters, block states, and
data objects are declared,
stored, and represented in
generated code

“Custom Storage Classes” —
Embedded Coder

rtwdemo_cscpredef

Create a data dictionary for a
model

“Data Definition and
Declaration Management”
— Embedded Coder

rtwdemo_advsc

Relocate data segments for
generated functions and data
using #pragmas for calibration
or data access

“Memory Sections” —
Embedded Coder

rtwdemo_memsec

Assess and adjust model
configuration parameters
based on the application
and an expected run-time
environment

“Configuration” — Simulink
Coder

“Configuration” — Embedded
Coder

rtwdemo_usingrtw_script
rtwdemo_usingrtwec_script

Check a model against basic
modeling guidelines

“Verify Model Syntax” —
Simulink

rtwdemo_advisor1

Add custom checks to the
Simulink Model Advisor

“Customization and
Automation”

slvnvdemo_mdladv

Check a model against custom
standards or guidelines

“Consult the Model Advisor” —
Simulink

1-34

V-Model for System Development

Developing a Detailed Software Design (Continued)

Goals Related Product
Information

Examples

Check a model against
industry standards and
guidelines (MathWorks
Automotive Advisory Board
(MAAB), IEC 61508, and
DO-178B)

“Standards and Guidelines” —
Embedded Coder

“Model Guidelines Compliance”
— Simulink Verification and
Validation

rtwdemo_iec61508

Obtain model coverage for
structural coverage analysis
such as MC/DC

“Model Coverage Analysis” —
Simulink Design Verifier™

cvbasic_operation

Prove properties and generate
test vectors for models

Simulink Design Verifier
sldvdemo_cruise_control
sldvdemo_cruise_control_-
verification

Generate reports of models
and software designs

“ MATLAB Report Generator”
— MATLAB Report Generator

“Simulink Report Generator”
— Simulink Report Generator

“System Design Description”
— Simulink Report Generator

rtwdemo_codegenrpt

Conduct reviews of your model
and software designs with
coworkers, customers, and
suppliers who do not have
Simulink available

“Web Display of Model
Information” — Simulink
Report Generator

“Model Comparison” —
Simulink Report Generator

slxml_sfcar

1-35

1 Product Overview

Developing a Detailed Software Design (Continued)

Goals Related Product
Information

Examples

Refine the concept model of
your component or system

Test and validate the model
functionality in real time

Test the hardware

Obtain real-time profiles and
code metrics for analysis and
sizing based on your embedded
processor

Assess the feasibility of the
algorithm based on integration
with the environment or plant
hardware

“Deployment” — Simulink
Coder

“Deployment” — Embedded
Coder

“Code Execution Profiling” —
Embedded Coder

“Static Code Metrics” —
Embedded Coder

rtwdemos, select
Desktop IDEsDesktop
TargetsEmbedded
IDEsEmbedded Targets

Generate source code for your
models, integrate the code
into your production build
environment, and run it on
existing hardware

“Code Generation” — Simulink
Coder

“Code Generation” —
Embedded Coder

rtwdemo_counter
rtwdemo_fcnprotoctrl
rtwdemo_cppencap
rtwdemo_async
“AUTOSAR Examples”
in the Embedded Coder
documentation

Integrate existing externally
written C or C++ code with
your model for simulation and
code generation

“Block Creation” — Simulink

“External Code Integration” —
Simulink Coder

“External Code Integration” —
Embedded Coder

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

Generate code for on-target
rapid prototyping on specific
embedded microprocessors
and IDEs

“Real-Time and Embedded
Systems”

In rtwdemos, select one of
the following: Desktop
IDEs, Desktop Targets,
Embedded IDEs, or
Embedded Targets

1-36

V-Model for System Development

Generating the Application Code

Goals Related Product
Information

Examples

Optimize generated ANSI®

C code for production (for
example, disable floating-point
code, remove termination
and error handling code, and
combine code entry points into
single functions)

“Performance” — Simulink
Coder

“Performance” — Embedded
Coder

rtwdemos, select
Optimizations

Optimize code for a specific
run-time environment, using
specialized function libraries

“Code Replacement” —
Embedded Coder

rtwdemo_crl_script

Control the format and style of
generated code

“Control Code Style” —
Embedded Coder

rtwdemo_parentheses

Control comments inserted
into generated code

“Add Custom Comments to
Generated Code” — Embedded
Coder

rtwdemo_comments

Enter special instructions or
tags for postprocessing by
third-party tools or processes

“Customize
Post-Code-Generation Build
Processing”

rtwdemo_buildinfo

Include requirements links in
generated code

“Review of Requirements
Links” — Simulink
Verification and Validation

rtwdemo_requirements

Trace model blocks and
subsystems to generated code
and vice versa

“Code Tracing” — Embedded
Coder

“Standards and Guidelines”

rtwdemo_comments
rtwdemo_hyperlinks

Integrate existing externally
written code with code
generated for a model

“Block Creation” — Simulink

“External Code Integration” —
Simulink Coder

“External Code Integration” —
Embedded Coder

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

1-37

1 Product Overview

Generating the Application Code (Continued)

Goals Related Product
Information

Examples

Verify generated code for
MISRA C®3 and other run-time
violations

“MISRA C Guidelines” —
Embedded Coder

Documentation for Polyspace®

Products

Protect the intellectual
property of component model
design and generated code

Generate a binary file (shared
library)

“Protected Model” — Simulink

“Shared Object Libraries” —
Embedded Coder

Generate a MEX-file
S-function for a model or
subsystem so that it can be
shared with a third-party
vendor

“Generated S-Function Block”

Generate a shared library
for a model or subsystem so
that it can be shared with a
third-party vendor

“Shared Object Libraries”
— Embedded Coder

Test generated production
code with an environment
or plant model to verify a
conversion of the model to code

“Software-in-the-Loop (SIL)
Simulation” — Embedded
Coder

rtwdemo_sil_pil_script

3. MISRA® and MISRA C® are registered trademarks of MISRA® Ltd., held on behalf of
the MISRA® Consortium.

1-38

http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html
http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

V-Model for System Development

Generating the Application Code (Continued)

Goals Related Product
Information

Examples

Write or generate an
S-function wrapper for
calling your generated source
code from a model running in
Simulink

“Write Wrapper S-Functions”

“Generate S-Function
Wrappers” — Embedded
Coder

rtwdemo_sil_pil_script

Set up and run SIL tests on
your host computer

“Software-in-the-Loop (SIL)
Simulation” — Embedded
Coder

rtwdemo_sil_pil_script

Integrating and Verifying Software

Goals Related Product
Information

Examples

Integrate existing externally
written C or C++ code with a
model for simulation and code
generation

“Block Creation” — Simulink

“External Code Integration” —
Simulink Coder

“External Code Integration” —
Embedded Coder

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

Connect to data interfaces
for generated C code data
structures

“Data Exchange” — Simulink
Coder

“Data Exchange” — Embedded
Coder

rtwdemo_capi
rtwdemo_asap2

Control the generation of code
interfaces so that external
software can compile, build,
and invoke the generated code

“Function and Class
Interfaces” — Embedded
Coder

rtwdemo_fcnprotoctrl
rtwdemo_cppencap

Export virtual and
function-call subsystems

“Export Code Generated from
Model to External Application”
— Embedded Coder

rtwdemo_export_functions

1-39

1 Product Overview

Integrating and Verifying Software (Continued)

Goals Related Product
Information

Examples

Include target-specific code “Code Replacement” —
Embedded Coder

rtwdemo_crl_script

Customize and control the
build process

“Build Process” rtwdemo_buildinfo

Create a zip file that contains
generated code files, static
files, and dependent data to
build the generated code in an
environment other than your
host computer

“Relocate Code to Another
Development Environment”

rtwdemo_buildinfo

Integrate software components
as a complete system
for testing in the target
environment

“Component Verification”

Generate source code for
integration with specific
production environments

“Code Generation”— Simulink
Coder

“Code Generation” —
Embedded Coder

rtwdemo_async
“AUTOSAR Examples”
in the Embedded Coder
documentation

Integrate code for a specific
run-time environment, using
specialized function libraries

“Code Replacement” —
Embedded Coder

rtwdemo_crl_script

Enter special instructions or
tags for postprocessing by
third-party tools or processes

“Customize
Post-Code-Generation Build
Processing”

rtwdemo_buildinfo

Integrate existing externally
written code with code
generated for a model

“Block Creation” — Simulink

“External Code Integration”

“External Code Integration” —
Embedded Coder

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

1-40

V-Model for System Development

Integrating and Verifying Software (Continued)

Goals Related Product
Information

Examples

Connect to data interfaces
for the generated C code data
structures

“Data Exchange” — Simulink
Coder

“Data Exchange” — Embedded
Coder

rtwdemo_capi
rtwdemo_asap2

Customize and control the
build process

“Build Process” rtwdemo_buildinfo

Create a zip file that contains
generated code files, static
files, and dependent data for
building the generated code
in an environment other than
your host computer

“Relocate Code to Another
Development Environment”

rtwdemo_buildinfo

Schedule the generated code “Time-Based Scheduling” rtwdemos, select Multirate
Support

Verify object code files in a
target environment

“Software-in-the-Loop (SIL)
Simulation”

rtwdemo_sil_pil_script

Set up and run PIL tests on
your target system

“Processor-in-the-Loop (PIL)
Simulation” rtwdemo_sil_pil_script

rtwdemo_custom_pil_script
rtwdemo_rtiostream_script
See the list of supported
hardware for the Embedded
Coder product on the
MathWorks Web site, and
then find an example for the
related product of interest

1-41

http://www.mathworks.com/products/embedded-coder/supportedio.html
http://www.mathworks.com/products/embedded-coder/supportedio.html

1 Product Overview

Integrating, Verifying, and Calibrating System Components

Goals Related Product
Information

Examples

Integrate the software and
its microprocessor with the
hardware environment for
the final embedded system
product

Add the complexity of the
environment (or plant) under
control to the test platform

Test and verify the embedded
system or control unit by using
a real-time target environment

“Hardware-in-the-Loop (HIL)
Simulation”

Generate source code for HIL
testing

“Code Generation”— Simulink
Coder

“Code Generation” —
Embedded Coder

“Hardware-in-the-Loop (HIL)
Simulation”

Conduct hard real-time HIL
testing using PCs

“xPC Target” doc xpcdemos

Tune ECU properly for its
intended use

“Data Exchange” — Simulink
Coder

“Data Exchange” — Embedded
Coder

Generate ASAP2 data files “ASAP2 Data Measurement
and Calibration”

rtwdemo_asap2

Generate C API data interface
files

“Data Interchange Using C
API”

rtwdemo_capi

1-42

2

Getting Started Examples

• “Generate C Code for a Model” on page 2-2

• “Build and Run Executable” on page 2-13

• “Tune Parameters and Monitor Signals During Execution” on page 2-19

2 Getting Started Examples

Generate C Code for a Model

In this section...

“Configure Model for Code Generation” on page 2-2

“Check Model Configuration for Execution Efficiency” on page 2-4

“Simulate the Model” on page 2-7

“Generate Code” on page 2-8

“View the Generated Code” on page 2-9

Simulink Coder generates standalone C/C++ code for Simulink models for
deployment in a wide variety of applications. The Getting Started with
Simulink Coder includes three tutorials. It is recommended that you
complete Generate C Code for a Model first, and then the following
tutorials: “Build and Run Executable” on page 2-13 and “Tune Parameters
and Monitor Signals During Execution” on page 2-19.

This example shows how to prepare the rtwdemo_secondOrderSystem model
for code generation and generate C code for real-time simulation. The
rtwdemo_secondOrderSystem model implements a second-order physical
system called an ideal mass-spring-damper system. Components of the
system equation are listed as mass, stiffness, and damping. To open the
model, in the command window, type:

rtwdemo_secondOrderSystem

Configure Model for Code Generation
To prepare the model for generating C89/C90 compliant C code, you can
specify code generation settings in the Configuration Parameters dialog box.
To open the Configuration Parameters dialog box, in the Simulink Editor,
click the Model Configuration Parameters button.

2-2

Generate C Code for a Model

Solver for Code Generation
To generate code for a model, you must configure a solver. Simulink Coder
generates only standalone code for a fixed-step solver. On the Solver pane,
select a solver that meets the performance criteria for real-time execution.
For this model, observe the following settings.

Code Generation Target
To specify a target configuration for the model, choose a system target file, a
template makefile, and a make command. You can use a ready-to-run Generic
Real-Time Target (GRT) configuration.

1 In the Configuration Parameters dialog box, select the Code Generation
pane.

2 To open the System Target File Browser dialog box, click the System
target file parameter Browse button. The System Target File Browser
dialog box includes a list of available targets. This example uses the system
target file grt.tlc Generic Real-Time Target.

2-3

2 Getting Started Examples

3 Click OK.

Code Generation Report
You can specify that the code generation process automatically generates
an HTML report that includes the generated code and information about
the model.

1 In the Configuration Parameters dialog box, select the Code Generation
> Report pane.

2 For this example, the following configuration parameters are selected:

• Create code generation report

• Open report automatically

After the code generation process is complete, an HTML code generation
report appears in a separate window.

Check Model Configuration for Execution Efficiency
When generating code for real-time deployment, a common objective for
the generated code is that it executes efficiently. You can run the Code
Generation Advisor on your model for a specified objective, such as Execution

2-4

Generate C Code for a Model

efficiency. The advisor provides information on how to meet code generation
objectives for your model.

1 In the Configuration Parameters dialog box, select the Code Generation
pane.

2 From the Select objective drop-down list, select Execution efficiency.
Click Apply.

3 Click Check model.

4 In the System Selector dialog box, click OK to run checks on the model.

After the advisor runs, there are two warnings indicated by a yellow
triangle.

5 On the left pane, click Check model configuration settings against
code generation objectives.

6 On the right pane, click Modify Parameters. The configuration
parameters that caused the warning are changed to the
software-recommended setting.

7 On the right pane, click Run This Check. The check now passes. The
Code Generation Advisor lists the parameters and their recommended
settings for Execution efficiency.

2-5

2 Getting Started Examples

Close the Code Generation Advisor.

2-6

Generate C Code for a Model

Ignore the warning for the Identify questionable blocks within the
specified system. This warning is for production code generation which is
not the goal for this example.

Simulate the Model
In the Simulink Editor, simulate the model to verify that the output is as you
expect for the specified solver settings.

1 To log data to the Simulation Data Inspector, on the Simulink Editor
toolbar, verify that the Record button is selected.

2 Simulate the model.

3 When the simulation is done, in the Simulink Editor, click the link in the
notification bar to open the Simulation Data Inspector.

4 Expand the run and then select the Outport block data.

2-7

2 Getting Started Examples

Leave these results in the Simulation Data Inspector. Later, you can compare
the simulation data to the output data generated from the executable shown
in “Build and Run Executable” on page 2-13.

Generate Code

1 Select the Generate code only check box.

2 Click Apply.

3 Click Generate code.

After code generation, the HTML code generation report opens.

2-8

Generate C Code for a Model

View the Generated Code
The code generation process places the source code files in the
rtwdemo_secondOrderSystem_grt_rtw folder. The HTML code generation
report is in the rtwdemo_secondOrderSystem_grt_rtw/html folder. The code
generation report includes:

• Subsystem Report

2-9

2 Getting Started Examples

• Code Interface Report

• Generated code

Code Interface Report
In the left navigation pane, click Code Interface Report to open the report.
The code interface report provides information on how an external main
program can interface with the generated code. There are three entry point
functions to initialize, step, and terminate the real-time capable code.

2-10

Generate C Code for a Model

For rtwdemo_secondOrderSystem, the Outports section includes a single
output variable representing the Outport block of the model.

2-11

2 Getting Started Examples

Generated Code
The generated model.c file rtwdemo_secondOrderSystem.c contains
the algorithm code, including the ODE solver code. The model data
and entry point functions are accessible to a caller by including
rtwdemo_secondOrderSystem.h.

On the left navigation pane, click rtwdemo_secondOrderSystem.h to view
the extern declarations for block outputs, continuous states, model output,
entry points, and timing data:

The next example shows how to build an executable. See “Build and Run
Executable” on page 2-13.

2-12

Build and Run Executable

Build and Run Executable

In this section...

“Configure Model to Output Data to MAT-File” on page 2-13

“Build Executable” on page 2-14

“Run Executable” on page 2-15

“View Results” on page 2-16

Simulink Coder supports several methods for building an executable:

• Using toolchain based controls.

• Using template makefile based controls.

• Interfacing with an IDE.

The code generation target that you select for your model determines the
build process controls that are presented to you. The example model uses
the GRT code generation target, which enables the toolchain based controls.
This example shows how to build an executable using the toolchain controls,
and then test the executable results.

Before following this example, simulate the example model,
rtwdemo_secondOrderSystem, as described in “Generate C Code for a Model”
on page 2-2. Later on, the simulation results are used to compare the results
from running the executable.

Configure Model to Output Data to MAT-File
Before building the executable, enable the model to log output to a MAT-file
instead of the base workspace. You can then view the output data by
importing the MAT-file into the Simulation Data Inspector.

1 In the Configuration Parameters dialog box, select the Code Generation
> Interface pane.

2 Under Data exchange, theMAT-file logging check box is selected.

3 TheMAT-file variable name modifier parameters is specified as rt_.

2-13

2 Getting Started Examples

4 Click the Data Import/Export pane and specify the Save to workspace
parameters, as shown here.

5 Click Apply.

Build Executable
The internal MATLAB function make_rtw executes the code generation
process for a model. make_rtw performs an update diagram on the model,
generates code, and builds an executable.

To build an executable in the working MATLAB folder:

1 On the Code Generation pane, in the Build process section, specify the
Toolchain and Build configuration parameters.

2-14

Build and Run Executable

Here, the default toolchain is Microsoft Visual C++ 2010 v10.0 |
nmake (64-bit Windows).

2 To verify your toolchain, click Validate.

The Validation Report indicates if the checks passed.

3 Clear the Generate code only check box.

4 Click Apply.

5 To build the executable, click Build (previously the Generate code
button).

The MATLAB command window displays the following output:

Starting build procedure for model: rtwdemo_secondOrderSystem

Successful completion of build procedure for model: rtwdemo_secondOrderSystem

The code generator places the executable in the working folder. On Windows
the executable is rtwdemo_secondOrderSystem.exe. On Linux the executable
is rtwdemo_secondOrderSystem.

Run Executable
In the MATLAB command window, run the executable. For Windows, type

!rtwdemo_secondOrderSystem

For Linux, type

!./rtwdemo_secondOrderSystem

MATLAB displays the following output:

2-15

2 Getting Started Examples

** starting the model **
** created rtwdemo_secondOrderSystem.mat **

The code generator outputs a MAT-file, rtwdemo_secondOrderSystem.mat. It
saves the file to the working folder.

View Results
This example shows you how to import data into the Simulation Data
Inspector, and then compare the executable results with the simulation
results. If you have not already recorded the simulation data to the Simulation
Data Inspector, follow the instructions in “Simulate the Model” on page 2-7.

1 If the Simulation Data Inspector is not already open, in the Simulink
Editor, click the down arrow of the Record button and select Simulation
Data Inspector.

2 To open the Import Data dialog box, click the Import Data button.

3 In the Import Data dialog box, for Import from, select the MAT-file
option button.

Enter the rtwdemo_secondOrderSystem.mat file. The data populates the
table.

2-16

Build and Run Executable

Click OK.

4 On the Inspect Signals tab, select signals from each run to view them in
the right pane.

5 Select the Compare Runs tab.

6 Specify Run 1 and Run 2. Click Compare.

2-17

2 Getting Started Examples

The output from the executed code is within a reasonable tolerance of the
simulation data output previously collected in “Generate C Code for a
Model” on page 2-2.

The next example shows how to run the executable on your machine using
Simulink as an interface for testing. See “Tune Parameters and Monitor
Signals During Execution” on page 2-19.

2-18

Tune Parameters and Monitor Signals During Execution

Tune Parameters and Monitor Signals During Execution

In this section...

“Set Up Signal Monitoring” on page 2-19

“Set Up Tunable Parameters” on page 2-20

“Build the Target Executable” on page 2-22

“Run External Mode Target Program” on page 2-23

“Connect Simulink to the External Process” on page 2-24

“Parameter Tuning” on page 2-24

“Next Steps” on page 2-26

This example shows how to tune parameters and monitor
signals of the standalone executable using the example model,
rtwdemo_secondOrderSystem. Using Simulink External Mode simulation,
Simulink communicates to a standalone executable that can be running in real
time or nonreal time depending on the target code generation configuration.
The example model uses the default GRT target implementation. Simulink
communicates to a separate and standalone non-real-time executable running
on the host computer over a TCP/IP communication link.

Before working through this example, consider doing these getting started
tutorials: “Generate C Code for a Model” on page 2-2 and “Build and Run
Executable” on page 2-13.

Set Up Signal Monitoring
To view signal data during execution, you can use Scope blocks in your model.
For this example, the Scope block is sufficient for viewing the output from
an external program.

To avoid placing many scopes throughout your model, you can use a Floating
Scope block. By default, the code generator attempts to implement all signals
in local memory. A floating scope cannot access local memory. Therefore, you
must place signals in memory that are available to the floating scope. Once
signals are in global memory, you can add signals to a floating scope. To place

2-19

2 Getting Started Examples

a signal into global memory in the generated code you can add a test point to a
signal or you can configure your model to place all signals into global memory.

Add a Test Point to a Signal
If your model is large, placing all signals into global memory generates less
efficient code. Consider using test points which place only specified signals
into global memory. A signal specified as a test point is defined in the block
I/O data structure. Specify a test point for a signal by selecting the Test
point check box in the Signal Properties dialog box.

Place All Signals into Global Memory
You can configure the model such that the code generator places each
signal in the global block I/O data structure in the generated code. On the
Optimization > Signals and Parameters pane, clear the Signal storage
reuse check box. All signals are placed into global memory in the generated
code, which makes the signal data available to a floating scope. You can add
signals to a Floating Scope block using the Signal Selector dialog box.

Set Up Tunable Parameters
You can tune parameters directly in the Block Parameter dialog box while an
external program is running. Alternatively, you can tune parameters that
are in the base workspace.

1 Declare the following variables in the base workspace.

2-20

Tune Parameters and Monitor Signals During Execution

2 For each Gain block in the model, double-click the block to open the Block
Parameters dialog box.

3 Replace the Gain parameter value with the name of the corresponding
workspace variable.

To use tunable parameters, the variables must be preserved by name in the
generated code. Before generating code, you must inline all parameters in the
model before generating code.

1 In the Configuration Parameters dialog box, on the Optimization >
Signals and Parameters pane, select Inline parameters. The code
generator numerically inlines parameter values into the generated code
to maximize code efficiency. Therefore, you must define global tunable
parameters.

2 Click Configure to open the Model Parameter Configuration dialog.

3 To specify the variables that you want to preserve in the code, add each
variable to the Global (tunable) parameters table. Click a variable
name in the Source list, and then click Add to table.

2-21

2 Getting Started Examples

Each variable uses the default Storage class SimulinkGlobal(Auto). A
variable specified as a SimulinkGlobal is placed in the model parameter
data structure in the generated code.

4 Click Apply and OK.

Now your model is set up to change the Gain parameters in the base
workspace once the external program is executing.

Build the Target Executable
This example uses the default TCP/IP communication protocol for a GRT
target.

1 In the Configuration Parameters dialog box, select the Code Generation
> Interface pane.

2 For the Interface parameter, select External mode.

3 Click Apply.

2-22

Tune Parameters and Monitor Signals During Execution

4 To build the executable, on the Code Generation pane, click Build.
Alternatively, from the model diagram, press Ctrl-B.

The code generation process creates the executable,
rtwdemo_secondOrderSystem.exe, and places it in the current folder.

The tunable parameters and signal parameters are defined in
rtwdemo_secondOrderSystem.h.

Run External Mode Target Program
Open a command window and go to the folder where the executable is saved.
Run the executable:

>> rtwdemo_secondOrderSystem -tf inf

The tf option overrides the stop time so that the executable runs indefinitely.

2-23

2 Getting Started Examples

Connect Simulink to the External Process
To connect rtwdemo_secondOrderSystem to the running executable:

1 From the Simulink Editor, select Code > External Mode Control Panel.

2 Click Connect to establish a connection.

View the data from the external process in the scope.

Parameter Tuning
You can now change block parameter settings in Simulink and observe the
effects the changes have on the target program.

1 Change the value of base workspace variable c from 400 to 800.

2 Perform an update diagram, Ctrl-D. After changing the value of a base
workspace variable, you must perform an update diagram in order to see
the change in the ongoing simulation output.

2-24

Tune Parameters and Monitor Signals During Execution

3 At the MATLAB command line, change the mass parameter, m, from
1.0E-6 kg to 2.0E-6 kg.

4 Perform an update diagram, Ctrl-D.

2-25

2 Getting Started Examples

5 To stop the simulation, on the External Mode Control Panel dialog box,
click Disconnect.

Next Steps
For more information, the following table includes common capabilities and
resources for generating and executing C and C++ code for your model.

To... See....

Model multirate systems “Scheduling”

Create multiple model configuration
sets and share configuration
parameter settings across models

“Configuration Sets”

Control how signals are stored and
represented in the generated code

“Signal Storage Basics” and “Signal
Objects”

2-26

Tune Parameters and Monitor Signals During Execution

To... See....

Generate block parameter storage
declarations and interface block
parameters to your code

“Tunable Parameter Storage
Classes” and “Parameter Objects”

Store data separate from the model “Data Objects”

Interface with legacy code for
simulation and code generation

“External Code Integration”

Generate separate files for
subsystems and model

“File Packaging”

Configure code comments and
reserve keywords

“Code Appearance”

Generate C++ compatible code “Language”

Export an ASAP2 file containing
information about your model during
the code generation process

“ASAP2 Data Measurement and
Calibration”

Write host-based or target-based
code that interacts with signals,
states, root-level inputs/outputs, and
parameters in your target-based
application code

“Data Interchange Using C API”

Create a protected model that hides
all block and line information to
share with third-party

“Model Protection”

Customize the build process “Build Process”

Create a custom block “Block Authoring”

Create your own target “Target Development”

2-27

2 Getting Started Examples

2-28

Index

IndexA
accelerated simulation

as an application of code generation
technology 1-7

algorithm development
tools for 1-9

application requirements 1-12

C
Code generation from MATLAB

for algorithm development 1-9
Code generation technology

applications of 1-7
introduction to 1-3
products associated with 1-3

configuration parameters 1-14
questions to consider 1-13

D
dialog boxes

Configuration Parameters 1-12
Model Explorer 1-14

E
embedded microprocessor

as target environment 1-4

H
hardware-in-the-loop (HIL) testing

as an application of code generation
technology 1-7

compared with other types of in-the-loop
testing 1-26

host computer
as target environment 1-4

host-based simulation

compared to standalone rapid simulations
and prototyping 1-24

I
in-the-loop testing

types of 1-26

M
make utility 1-16
Model Advisor 1-14
model intellectual property protection

as an application of code generation
technology 1-7

O
on-target rapid prototyping

as an application of code generation
technology 1-7

P
processor-in-the-loop (PIL) testing

as an application of code generation
technology 1-7

compared with other types of in-the-loop
testing 1-26

production code generation
as an application of code generation

technology 1-7
prototyping

types of 1-24

R
rapid prototyping

as an application of code generation
technology 1-7

Index-1

Index

compared to simulations and on-target
prototyping 1-24

rapid simulation
as an application of code generation

technology 1-7
rapid simulations, standalone

compared to host-based simulations and
prototyping 1-24

real-time simulator
as target environment 1-4

S
simulation

types of 1-24
Simulink

for algorithm development 1-9
software-in-the-loop (SIL) testing

as an application of code generation
technology 1-7

compared with other types of in-the-loop
testing 1-26

system simulation
as an application of code generation

technology 1-7

T
target environments 1-4
target-based (on-target) rapid prototyping

compared to simulations and rapid
prototyping 1-24

testing
types of 1-26

V
V-model

applying code generation technology to 1-23

Index-2

	toc
	Check Bug Reports for Issues and Fixes
	Product Overview
	Simulink Coder Product Description
	Key Features

	Code Generation Technology
	Target Environments and Applications
	About Target Environments
	Types of Target Environments Supported By Simulink Coder
	Applications of Supported Target Environments

	Algorithm Development Options
	Simulink and Stateflow Model
	About the Workflow
	Mapping Application Requirements to Configuration Options
	Adjusting Configuration Settings
	Run the Model Advisor
	Generating Code
	Verifying the Generated Code
	Building an Executable Program
	Verifying the Executable Program
	Naming and Saving the Configuration Set
	Documenting the Project

	MATLAB Code with Simulink Model

	V-Model for System Development
	What Is the V-Model?
	Types of Simulation and Prototyping in the V-Model
	Types of In-the-Loop Testing in the V-Model
	Mapping of Code Generation Goals to the V-Model

	Getting Started Examples
	Generate C Code for a Model
	Configure Model for Code Generation
	Solver for Code Generation
	Code Generation Target
	Code Generation Report

	Check Model Configuration for Execution Efficiency
	Simulate the Model
	Generate Code
	View the Generated Code
	Code Interface Report
	Generated Code

	Build and Run Executable
	Configure Model to Output Data to MAT-File
	Build Executable
	Run Executable
	View Results

	Tune Parameters and Monitor Signals During Execution
	Set Up Signal Monitoring
	Add a Test Point to a Signal
	Place All Signals into Global Memory

	Set Up Tunable Parameters
	Build the Target Executable
	Run External Mode Target Program
	Connect Simulink to the External Process
	Parameter Tuning
	Next Steps

	Index

	tables
	Documenting and Validating Requirements
	Developing a Model Executable Specification
	Developing a Detailed Software Design
	Generating the Application Code
	Integrating and Verifying Software
	Integrating, Verifying, and Calibrating System Components

